Bremen

Y

Advanced Computer Graphics

Collision Detection

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

<N

--N3)

e e

http://cgvr.cs.uni-bremen.de

Breme

Y Examples of Applications

Virtual
Prototyping,
Digital Twins,
Assembly
Simulation

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 2

Bremen

U Examples of Applications

Natural User
Interaction in
Virtual Reality

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 3

Y Examples of Applications

. - —
AP — -
—— s — —
— ——
o A—

|
|

Physically-
Based
Simulation in
Games and VR

"

G. Zachmann Computergraphics 2 SS May 2024

Collision

Detection

=0
e

Bremen

U Examples of Applications

Robotics: path planning
(piano mover's problem)

G. Zachmann Computergraphics 2 SS May 2024

Collision Detection

Bremen

U Examples of Applications

Force Feedback for
Medical Immersive
Training Simulators

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 6

Bremen

Y Examples of Applications

Haptics Frequency: 99&.1:726
Collision Frequency: 23881902588}
MarchingCubes Frequency-4.45867 25 =

Force Feedback for
Medical Immersive
Training Simulators

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 7

Bremen

W Collision Detection Within Simulations

* Main loop:
Move objects

Check collisions

Handle collisions (e.g., compute penalty forces)

* Collisions pose two ditferent problems:

1. Collision detection

2. Collision handling (e.qg., physically-based simulation, or visualization)

* In this chapter: only collision detection

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

Bremen

U Definitions

 Given polyhedrons P, Q C R’

* The detection problem:

P and Q collide <
PNQ+#0«
dxreR3:z € PAz €@

* The construction problem:
compute R:=PNQ

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

F-N1]
m e

10

™ ™
= =
= =
= =
= =
. . 5
= = 2
= = m
= = 2
~ = S
= =
= =
= =
. = =
= =
e Il
= =
(S = =
1 . .
= = 8
n = = w_,
O m m s
OU . . .
O
O,
)
Q
O -
O
-+ ~
o mmmm M\w m\w .m <& W
Vo) e O c < 2
o mmmm (D) (D)) D) o
— - ._.H..u > O m
o 0 N
>N
W, m = o =
o+ O m
7y Z g c X
o — S v v O
o = S el
> - % = &
. . £
W - @\ ™ 2
©)
D)
=

Bremen

U Requirements on Collision Detection -

* Handle a large class of objects
* Lots of moving objects (1000s in some cases)

* Very high performance, so that a physically-based simulation can do many
iterations per frame (at least 2x 100,000 polygons in <1 millisec)

e Return a contact point ("witness") in case of collision

e Optionally: return all intersection points

* Auxiliary data structures should not be too large (<2x memory usage of
originial data)

* Preprocessing for these auxiliary data structures should not take too long, so that
it can be done at startup time (< 5sec / object)

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 11

Bremen

Y The Collision Detection Pipeline

G. Zachmann

" Application |

Coll.
Handler C

ﬁ

.

€S
S o

E’ Q 4 N
Sc [Scene Graph
= O
8 c

—

N

L

g O
v O

o< Exact Coll.
gg Detection
allback

A

(pairs of potentially
colliding objects)

>
Collision
Obj.s

Collision
Front-End

Neighbor
Filtering 2

&

|

Narrow phase

Computergraphics 2

SS

O

/

/
a0

e

A

(pairs of potentially
colliding objects)

Collision
Matrix

T —

y

(pairs of collision obj's)

Neighbor
Filtering 1

e

Broad phase

May 2024

Collision Detection

12

Bremen

U The Collision Matrix

* Interest in collisions is specific to different applications/modules:
* Not all modules in an application are interested in all possible collisions;

* Some pairs of objects collide all the time, some can never collide;

e Goal: prevent unnecessary collision tests

. . Obi1 2 3 456 7 8
= Collision Matrix)

1 X X | X | X
* The elements in this matrix comprise: 2 x
3 X X
* Flag for collision detection 4
* Additional info that needs to be stored > N
: : 6
from frame to frame for each pair for certain ¥)
algorithms (e.g., the separating plane) 3 X

e Callbacks in die Module

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

Bremen

U Methods for the Broad Phase

* Broad phase = one or more filtering step

e Goal: quickly filter pairs of objects that cannot intersect because they are too far
away from each other — output: PCO's (potentially colliding objects)

e Standard approach:

* Enclose each object within a bounding box (bbox)

 Compare the 2 bboxes for a given pair of objects

* Assumption: n objects are moving

> Brute-force method needs to compare O(n2) bboxes
* Goal: determine neighbors more efficiently

> 3D grid, sweep plane techniques ("sweep and prune"), feature tracking on

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

Bremen

Y The 3D Grid

1. Partition the "universe" by a 3D grid

2. For each obj: determine cell occupancy by bbox

3. Find potentially colliding pairs (PCP):
e Data structure here: hash table (!)

* Collision in hash table — pairs are a PCP

4. When objects move, update grid

* The trade-off:

* Fewer cells = larger cells
* Distant objects are still "neighbors"
* More cells = smaller cells

* Objects occupy more cells
e Effort for updating increases

* Rule of thumb: cell size = avg obj diameter

G. Zachmann Computergraphics 2 SS

May 2024

&>
C

=
1)
<@

total time

_/

grid resolution

Collision Detection

15

Bremen

Y The Plane Sweep Technique (aka Sweep and Prune)

* The idea: sweep plane through space perpendicular to the X axis

e The algorithm:

sort the X coordinates of all boxes

start with the leftmost box

keep a list of active boxes

loop over x-coords (= left/right box borders):

if current box border is the left side (= "opening"):

check this box against all boxes in the active list

add this box to the list of active boxes

W

o EEEn
N

L
CG =
VR =

else (= "closing"):

remove this box from the list of active boxes

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

16

Bremen

U Classes of Objects

* Polygon soups

* Not necessarily closed — S :

* Duplicate polygons

* Coplanar polygons \

* Self-penetrations

e Holes

* Closed and simple
(no self-penetrations) ~

e Convex

* Deformable / rigid

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

W Collision Detection for Convex Objects b

* Definition of “convex polyhedron”:

P c R® convex <
Vx,y e P:xy C P&

P — H; , H; = half-spaces

* A condition for "non-collision":
Pand Q are "linearly separable" :&

J half-space H: PCH AQC H' =
EIhERZMV/pEPqu ()h>0/\(1)h<0 Separating plane H

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 18

Bremen

U The "Separating Planes" Algorithm

* The idea: utilize temporal coherence —.
it E; was a separating plane between P and Q at time ¢, then the new

separating plane Hy. is probably not very "far" from H; (perhaps it is even
the same)

His \

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

19

Bremen

Y

load Ht = separating plane between P & Q at time t H,
H := Ht
repeat max n times
if exists v € vertices(P) on the back side of H:
rot./transl. H such that v is now on the front side of H
if exists v € vertices(Q)) on the front side of H:
rot./transl. H such that v is now on the back side of H
if there are no vertices on the "wrong" side of H, resp.:
return "no collision"
i1f there are still vertices on the '"wrong" side of H:
return '"collision" {could be wrong}

save Ht+l := H for the next frame

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 20

Bremen

Y How to Find a Vertex on the "Wrong" Side Quickly

e The brute-force method:
test all vertices v whether f(v) = (v —p)-n >0

e Observation:
I. fis linearin vy, vy, v;,

2. P is convex = f(x) has (usually) exactly one minimum
over all points x on the surface of P, consequently ..

3.3 f(v) = min

* The algorithm (steepest descent on the surface wrt. f):
 Start with an arbitrary vertex v
» Walk to that neighbor v’ of v for which f(v') = min. (among all neighbors)

* Stop if there is no neighbor v’ of v for which f(v') < f(v)

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 21

Bremen

@J) Updating the Candidate Plane, H

 In the following, represent all vertices p as (p, 1), i.e., use homogeneous coords

* Wewant VYpe P:h-p>0 and Vge P:h-q<0
e Let P C P be the "offending" points for a given plane h,i.e. Vp € P : h-p < 0

» Define a cost function ¢ = c(h) = — > _sh-p

* Change h so as to drive c down towards O ,

e Gradient descent: change h by negative gradient of ¢, i.e. h" =h i c(h)
C : d .

» Costfctcislinearinh,so Soc=—> 5P

* Therefore, h' =h+ 7 Zpeﬁ p , with 7 ="learning speed" (usually 7 « 1))
e In practice, one decelerates, i.e., ' = 0.97n , to prevent cycling

e (For object Q, some signs need to be changed)

* G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 22

Bremen

Y

I

¢ Perceptron Learning Rule (known in machine learning for a long time).
whenever we find p € P with h-p < 0, update husing h’ =h +np .
(Analog for Q, with some signs reversed.)

* Theorem:
It P, Q are linearly separable, then repeated application of the perceptron
learning rule will terminate after a finite number of steps.

e Corollary:
It P, Q are linearly separable, then the algorithm will find a separating plane

in a finite number of steps.

(When algo terminates, none of P, Q's vertices are on the wrong side. l.e.,
each step brings H closer to the solution.)

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

23

Bremen

@J) Proof of the Theorem oo 3

* Let h* be a separating plane, w.l.og. ||h*|| = 1
* Thereisad,suchthat Vpe P:h*p>d >0, Vge Q :h*q< —-d <0
e Such avalue d is called the "margin" of h*

e Assume further h* is optimal w.r.t. the margin d (i.e., has the largest margin)
e let V=PU{—q|qe Q}

* Thus, P, Q is linearly separable <

VoecP:hp>0AVgeQR:hq<0 & VvVwveV:hv>0

* G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 24

Y
e Let v € V be an "offending" vertex in k-th iteration

* After kiterations, h* = h* 1+ pv=h*2 4+ +nv=_...=1n> _\, kv
where k, = #iterations in which v was the offending vertex

e Consider h*hk:

h*-h* =h*-(n» kv)=n>» kh*v>nd)» k =ndk

veV veV veV
* Now, we use a trick to find a lower bound on |h¥| :

[h¥[[% = [[p*]*-[0*[|* = [[h*-h¥||* = n*d*k?

* G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

Bremen

* Now, find an upper bound
e Let D =

et D = max{ ||}
e Consider one iteration:

[RE([* — IR = R+ v |* — (IR
= [[W*HI” 4+ 2ph" v + (nv)? — [|h*H3

<0+ n°D?
* Taking this over k iterations:
[h*[|* < kn*D* + |[0°7

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

26

Bremen

Y

* Putting lower and upper bound together gives:
772(]’2/(2 S HthQ S k772D2

* Solving for k:

* In other words, the factor 5_22 gives a hint, how many iterations could be
needed; i.e., to some extent, % Is a measure of the "difficulty" of the problem

(except, we don't know d or D in advance)

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

27

Bremen

Y Properties of this Algorithm

+ Expected running time is in O(1)!
The algo exploits frame-to-frame coherence:
it the objects move only very little, then the algo just checks whether the old
separating plane is still a separating plane;

it the separating plane has to be moved, then the algo is often finished after
a few iterations.

+ Works even for deformable objects, so long as they stay convex

— Works only for convex objects

— Could return the wrong answer if P and Q are extremely close but not
intersecting (bias)

* Research question: can you find an un-biased (deterministic) variant?

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 28

Bremen

@ Visualization

G. Zachmann

Computergraphics 2

SS

May 2024

Collision Detection

b |—4 '\"
e ..
NN

| W
. cc e

29

Bremen

W Hierarchical Collision Detection

* The standard approach for
"polygon soups”

* Algorithmic technique:
divide & conquer

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 30

Bremen

Y The Bounding Volume Hierarchy (BVH) .

e Constructive definition of a bounding volume hierarchy:

1. Enclose all polygons, P, in a bounding volume BV(P) B
2. Partition P into subsets P4, ..., P, / \\
. B1 BZ 83
3. Rekursively construct a BVH for each P; 1IN VRN
and put them as children of P in the tree Bs, Bs;

* Typical arity =2 or 4

B3 831
\ B3,
B, x
B B,

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 31

Bremen

Y visualizations of different levels of some BVHs

e

49

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 32

Bremen

Y The General Hierarchical Collision Detection Algo “:

e Simultaneous traversal of two BVHs:

traverse(node X, node Y):
if X,Y do not overlap:
return
if X,Y are leaves:
check polygons
else
for all children pairs:

traverse(X;, Y5)
HOEE / \'%

Y DE)

Bounding Volume Test Tree (BVTT)
(only a conceptual(!) tree, never actually stored)

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 33

Bremen

Y

Different Kinds of Bounding Volumes

Requirements (for collision detection):
» Very tfast overlap test — "simple" BVs
* Even if BVs have been translated/rotated

* Little overlap among BVs on the same level in a BVH (i.e., if you want to
cover the whole space with the BVs, there should be as little overlap as
possible) — "tight BVs"

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

34

Bremen

—
Cylinder

[Weghorst et al., 1985]

Sphere
[Hubbard, 1996]

>
.
-
.
g Rl .
Q OIS .
a e, O % .
. RIS o ,
S, R . .
L N ‘e B4 . L
N o
. . e, o H -
" . . o . u
. H o0 H "
L - -
H
L % - L
. s . »
. . o L
g

Spher.i.g:"e‘\‘i shell
[Manocha, 1997]

G. Zachmann Computergraphics 2

Y Different Kinds of Bounding Volumes

[Beckmann, Kriegel, et al., 1990]

1

Prism

[Barequet, et al., 1996]

v
‘<6¢ i,
NN

Convex hull
[Lin et. al., 2001]

Box, AABB (R*-trees)

OBB (oriented bounding box)
|Gottschalk, et al., 1996]

k-DOP / Slabs Intersection of
[Zachmann, 1998] several BVs
SS May 2024 Collision Detection 35

Bremen

Y The Wheel of Re-Invention g

* OBB-Trees: have been proposed already in 1981 by Dana Ballard for
bounding 2D curves, except they called it "strip trees”

* AABB hierarchies: have been invented(?) in the 80-ies in the spatial data
bases community, except they call them "R-tree", or "R*-tree", or "X-tree",
etc.

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 36

Bremen

Y

Relationship Between Type of BV and Runtime

* In case of rigid collision detection (BVH construction can be neglected):

I =NyCy 4+ NpCp

Ny = number of BV overlap tests

Cy = cost of one BV overlap test

Np = number of intersection tests of primitives (e.g., triangles)
Cp = cost of one intersection test of two primitives

* In case of deformable objects (BVH must be updated):
I =NyCy+ NpCp + NyCy

Ny / Cy = number/cost of a BV update

* As the kind of BV gets tighter, Ny (and, to some degree, Np) decreases, but
Cy and (usually) Cy increases

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

: l:l
3 =
(W Ifl
&;X) l:l

N -
4 s
. CG
y R .

37

Bremen
i

Y Discretely Oriented Polytopes (k-DOPs) g

e Definition of k-DOPs: .
4 b,

Choose k fixed vectors b; € R?, with k even, /
and b; =- b . X
i bs < / . b,

We call these vectors generating vectors (or
just generators).

A k-DOP is a volume defined by the be X
° ° 8
intersection of k half-spaces: .
7
Note: this is just a sketch in 2D!
D = ﬂ H , H;:b;-x—d <0 in 3D graphics, the generators
1k should be evenly spaced over
| the unit sphere!

* Note: a k-DOP is completely described by D = (d4, ..., dy) € RX

SS May 2024 Collision Detection 38

G. Zachmann Computergraphics 2

Bremen

Y

* The overlap test for two (generator-aligned) k-DOPs:

D'ND° =g <

4 =1, ..,

l.e., it is just k/2 interval tests,

like this one:

* Note: this is just a generalization
of the simple AABB overlap test!

G. Zachmann

K
2

Computergraphics 2

SS

dhdl | N (a2 dE | =2

May 2024

"Slab"
Vs
7’
/\/ |
7’
7 4
// //
Vg

b,

» \

b

A

b

Collision Detection

>

\

b7

bs

b,
/ . by

39

Bremen

Y

34 3
L. VR =
bs
 Computation of a k-DOP, given a b, ! b,

polygon soup with vertices V = {vg, ..., v,} \/
b5< > b

* Foreachi=1, .., kK, compute
CII,' — MaX {Vj’b,'}

j=0,...,n

(assuming ||bi|| = 1)

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 40

Bremen

Y some Properties of k-DOPs

* AABBs are special DOPs

* The overlap test takes time € O(k),
k = number of orientations

* With growing k, the convex hull can
be approximated arbitrarily precise

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 41

Bremen

Y How to Deal With Non-Aligned (Rotated) DOPs?

* When using k-DOPs for BVH's for collision detection, usually the DOPs in
those hierarchies are calculated in object space, but later rotated in world
space

* Approach (w/o details):

* Precompute (at the beginning of kDOP-BVH traversal) a rotation matrix from A's
object space into B's object space

* Using that rotation matrix and a generic, generator-aligned kDOP, precompute a
transformation matrix for the kDOP's in BVH A

» Before testing a pair of (non-aligned) kDOP's in the two BVH's, enclose the kDOP
D from A in a new kDOP D' that is generator-aligned w.r.t. B's generators

* Then perform the standard overlap test doing k/2 interval overlap tests

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

42

Bremen

Y Parallel Collision Detection (kDet)

* Problem: all-pairs weakness, i.e., O(n2) in worst-case

e Goals:

1. Parallelize polygon pair finding
2. Characterization of objects not exposing all-pairs weakness

* Approach:

1. Algorithm using a hierarchy of grids (bottom-up traversal)

2. Geometric predicate involving Minkowski sums of triangles
and balls showing O(n) intersecting pairs of triangles

G. Zachmann Computergraphics 2 SS May 2024

) ¢

Collision Detection

43

Bremen

Y Preliminary Considerations

 What are the root causes for O(n2) coll.det. time?

1. Polygons are two-dimensional manifolds embedded in 3D —, can be
stacked arbitrarily tightly without intersections

2.In "stair cases"-like objects, polygons can have arbitrarily large aspect ratio

long side

hort side of its enclosing bbox

* Aspect ratio =

* Definition of "k-free sparsity":
Consider a set A of triangles and a triangle T € A; A
T'is called k-free, iff the #tris "close" to T < k,
where we only count triangles it they are
"larger than" or as large as T

 Ifall Ais k-free, then tris can't get "too close" to each other

* G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

44

Bremen

Y

)

* Theorem [Weller 2017]:
Let A be a k-free set of triangles; let T be a triangle not in A.
Then T intersects at most a constant number of larger tris in A.
More precisely, T intersects at most 3k larger tris from A.

* Proof: see the "Computational Geometry" course.

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

45

Bremen

Y Populating the Hierarchy of 3D Grids

* Let d(T) = diameter of circumcircle of triangle T, dyi, = min{d(T)| T € A}
* Construct hierarchy of grids (partitioning the same bbox of the object)
 "Lowest" level has cell size dmin, next level has cell size 2-dmin, etc.

 For T, determine its level [such that
2k_ldmin < d(T) S 2k_H—ldmin

i‘

* Insert T in all cells it occupies on level |

* l.e., cells of size ¢ contain only triangles
with d = ¢, but not d > 2c¢

e As usual, we store each level
as a hash table

* G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 46

Bremen

Y Checking One Polygon for Intersections

* Given polygon p € A, and hierarchy of grids containing polygons from B

* Traverse levels of grid upwards, until intersection is found or top level reached

o
checkIntersection(pgon p, multi-grid for B):
determine level 1 for p
forall levels 1 .. lpax:
forall cells cx on level 1 overlapping bbox(p) :
forall polygons q; in cCk:

check (p,q;) for intersection

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

) ¢

¥ cc =

HEEEEER
N

© VR =

47

Bremen

HEEEEER
N

L:‘,‘?*

’? CcG :l:
" VR S

Y ' The Complete Algorithm

* When checking polygons from A, consider only larger polygons in B
* For checking polygons from A, build a multi-level 3D grid for all polygons from B

* Then check polygons from B against larger polygons in A

checkColl(obj A, obj B):

in parallel forall p; € A:
insertInMultiGrid(pi)
in parallel forall gq; € B:
checkIntersection(qgq;i)

clear multi-grid
in parallel forall gq; € B
insertInMultiGrid(qgqi)
in parallel forall p; € A:
)

checkIntersection(pi

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

) ¢

Bremen

@J) Correctness

* It p e Aand g € B intersect, then

 Either, g < p and the intersection will be found during the first upsweep phase;

* Or, p < g and detection occurs during second upsweep phase

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

49

E R EEEEEEER
l.I.l.I.I.I.I.I.I.I-

Bremen

Y Complexity

* Number of levels in the grid hierarchy: O (log %=)

dmin

where dmax = biggest triangle (circumcircle, cell size)

» If Ais k-free, then for each polygon in B, the upsweep is O (log =)

e Same for the second phase

* In total, worst-case (sequential) complexity is O (n-log ¢=)

* Assuming the ratio dmax:dmin is bounded and we have O(n) many concurrent
threads available, then the parallel complexity is O(1)!

* We can use the algo even if we don't know k, or even it A,B are not k-free
(just the complexity is not guaranteed any more)

* G. Zachmann Computergraphics 2 SS May 2024 Collision Detection

50

Bremen

Y Most Objects Are K-Free

The k factors for 8000 objects from the 3D Meshes Research Database of INRIA

80-
60-
¢ 40-
o O
O O
O
. o o 5 o o
20- | | '
\ \ | | | | \ | |
0-
1 2 4 8 16 32 64 128 256 512 1024 2048
Polygons/ 1024

]

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 51

Bremen

Y Actual Running Times

) ¢

* Parallel time complexity: O(ﬂ) , where p = #processors / #threads

G. Zachmann

Computergraphics 2

40

milliseconds
() e
= S

-

SS May 2024

= kDet (ours)
s 0 Proximity

7 e

100 200
#polygons / 1000

Collision Detection

Nvidia GTX 1080

| W
. cc =

© VR =

52

Bremen

U Master / Bachelor Thesis Topics Bt

1. Re-implement kDet using modern CUDA, write beautiful code, optimize it
2. Extend to continuous collision detection (with obj motion)
3. Integrate (virtual) re-meshing to lower/achieve a good k-tactor

4. Can you use the k-free property to build better BVH's? f

"ow,,
“;fiizi ,]\

];4 irf |
N "‘“‘""7

Q'WJ

* In case of questions: ask René Weller or me

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 53

Bremen

U Master / Bachelor Thesis Topics /;

“
* Perform collision detection using machine learning]I]%%

} /.
* Use deep learning, or GLVQ "i']’
e Can it be done in 1 milliseconds ?!

* For rigid objects first, then deformable, or continuous collision detection

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 54

Bremen

U Master Thesis Topic

* Natural manipulation of virtual objects
using the virtual hand

e Use (our) collision detection as a basic
building block

* Challenge: no force-feedback

e Approach: non-linear optimization

* Determine position of dynamic object so as
to minimize penetration of the virtual hand

* Potentially combine with control algorithm
(PID, Ricatti) to increase stability

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 55

Bremen

U Master / Bachelor Thesis Topics

* Client-server system allowing people to check
the "coll.det.-readiness" of their geometry

* Client uploads object via browser
* Server performs benchmark
* Gathers statistics and creates heat map

 Send results back to client

* Client can view results in browser

| |

Potential ways to visualize the heat map

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 56

Bremen

U Master / Bachelor Thesis Topics

* Problem: packing arbitrary objects in
arbitrary containers

* Applications: fine art, 3D printing
* Special constraints:

 Various types of objects - should not form
clusters

* Percentage of object types is user-defined
* Especially for the arts application:
* |Increase surface density

* Make inner / occluded region of
container "hollow" (saves material)

G. Zachmann Computergraphics 2 SS May 2024 Collision Detection 57

